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Paralipomena of the Debye-Hiickel Theory

HARALD WERGELAND

The University of Trondheim —NTH, N-7034 Trondheim —NTH, Norway

The relation of Debye-Hiickel approximation for
the internal energy of ionic solutions, to a general
property of Coulomb forces and the principle of
parameter invariance, has been reviewed.

As is well known, the theory of real gases (Mayer
1937) encounters a problem of divergence with the
electric interactions because these have an ‘infinite
range’.

On the other hand, it is just this special feature of
the Coulomb potential which sustains Debye and
Hiickel’'s theory — the old stand-by of Electro-
chemistry.

An important step forward was undoubtedly
indicated by Mayer’s identification! (and exact
summation) of the ring-diagrams as the leading term
of an ingeniously reordered cluster expansion. And
most gratifying: The contribution of the ring-
diagrams amounts precisely to the Debye-Hiickel
approximation. This certainly was a welcome
substantiation of that clever theory — founded as it
was on the somewhat problematic ‘Poisson — Boltz-
mann Equation’.

Thus far, however, the complete system of
successive corrections similar to Mayer’s virial
expansion, is not readily available. And even if it
were, we cannot be certain of a corresponding
progress with ionic solutions. Liquids, even non-
ionic ones, are an unwieldy problem in Statistical
Mechanics, and the equation of state for plasma
may not be more useful to electrochemistry, than the
(very perfect) theory of real gases could be for the
theory of osmotic pressure. Witness to this is the
‘kinetic interpretation’ of van’t Hoff's Law which,
despite apparent simplicity, of course is not correct.

Under the circumstances, it may perhaps be
worth-while to revisit some of the elementary
conditions which the theory of electrolytes has to
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comply with. This will also enable us to simplify
some current derivations of the asymptotic formulae
at high dilution.

1. Electric stresses. From Debye and Hiickel’s
expression for the ionic part of internal energy, eqn.
(1), where r, =(ekTV/ZN g?) * (the Debye-radius), it
follows, by (usually long-winded) thermodynamical
deductions, that the ionic correction to the pressure
can be written as eqn. (2).
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It is interesting to note that it has precisely the
form of the Maxwell radiation pressure (albeit
negative, that is, not a pressure but a suction —
generally of the order ~10 atm for 1-molar con-
centration of strong electrolyte).

In fact it has a similar origin viz. the Maxwell
stresses due to the electric fields of the ions. Since
eqn. (2) is much more general than the D. H. theory
we shall pause to prove it without invoking eqn. (1).

At an arbitrary point (r) in the solution, the ions
produce a field [see eqn. (3)], which is rapidly
fluctuating as a consequence of the thermal motions.
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Writing their potential energy as volume integral
over the energy density of this field [see appendix
(1)], eqn. (4), we have in the canonical average (...),
which of course involves also the repulsive forces
tacitly implied here, eqn. (5).

E°=%e[dV(&? — self energies) @
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The stress tensor of the fluctuating field is
Ty=¢ (8:&,—56°0,)

but because of isotropy its shear components: J; .,
=0, in the average, whereby it reduces to a scalar
pressure, eqn. (6)

P=-g,

= %s(?i —s.€.) (6)

Comparison of (5) and (6) shows that this is just the
relation (2).

2. The Thermodynamics. Between excess functions
U¢=U(e)—U(e=0),..., we have differential re-
lations like eqn. (7), which together with the general
eqn. (2) (see appendix (2)), implies two ‘isentropic’
relations, eqns. (8) and (9), showing that the excess
entropy is a function: S(U¢/T).

TdSe =dUs+PdV, etc. (7
UV'3 = const.(S° ) (8)
TV'/3 = const.(S¢-+) )

On the Debye Hiickel theory this function is
simply as eqn. (10) and consequently the excess free
energy as eqn. (11).

S = U ———1——(V/r3)k (10)
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Neglecting compressibility of condensed phases
under the pressures involved, the excess free
energies F*(V,...) and G(P,- - -) will be equal.

From this then follow activity coefficients et c.
by the standard procedure:
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For ions, the first term ~dV/oN,, which may be

negative as well as positive, should consistently be
omitted in this approximation where compress-

ibility (G*— F¢ ~(P°)?0V/0P) is neglected.

For the solvent (g,=0) of a dilute electrolyte, on
the other hand, G. N. Lewis’ partial molecular
volume will be v, ~ V/N . Hence we have the familiar
expressions,

1
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for the ions

respectively, whose asymptotic validity at high
dilution seems to be generally agreed upon.

3. Parameter invariance. The isentropic constancy
(10) of V/r} is typical of the D.H.theory: A reversible
change of the linear dimensions in the system,
including the radius ry, of the ‘ion atmosphere’, will
preserve the order imparted by the Coulomb forces
and hence the negative contribution to entropy.

This invariance however, reflects a more general
property of the Coulomb interaction. If by ‘entropy’
we mean S°, one may say that the dimensionless
ratio, eqn. (12), is ‘adiabatically invariant’.

£ = (@YekT)V5 (12)

It follows from the observation that the purely
mechanical expression E¢/e? is invariant under the
parameter transformation: e—e-+de. This trans-
formation has, of course, been much used as a
formal device in the D.H.theory. Its physical basis is
that an invariance with respect to slow change of a
mechanical parameter implies an isentropic relation
in the thermodynamics of a system.

In this case the adiabatic invariance of U¢/e®
implies eqn. (13)
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and hence

2U Uevs
TdS® = dU®+ P*dV——de = Usd log 5
e e
Accordingly we may specify the invariants in
eqns. (8) and (9) as

UeV1/3
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and
TVI/3 (Se, e, Ni . ) (9,)

respectively.

These quantities may be multiplied by any
function of the constraints and of the universal
constants ¢ and k without impairing the invariance.

Thus we may write the relation (9) in the form

ekT s _ <Se _Ni )
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where ¢ must be homogeneous and dimensionless.
From e, ¢, k, alone no dimensionless combinations
can be formed, hence they do not appear explicitly
among the arguments of ¢. Inversion of (14) thus
shows the adiabatic invariance of ¢ as defined in (12).

Similarly we are allowed to multiply (8') with
&/N*'3 (but not with any function of e!) to obtain eqn.
(15),

(14)
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Hence in consequence of eqn. (14)
Ue eZ 2
KT kTv' (ekTv””{ }>
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Since f must vanish at infinite dilution (x;,—0--)
and also for e=0, power series in ¢ seem
conceivable. However, the attempts in this direction
(Gosh 1918 —21) are empirically ruled out by the
success of the Debye-Hiickel approximation:

fﬂ)(é, {xi}) P %(szxi)flﬁ . 61/2

So far, a big part of the whole problem is rather
summarily disposed of by comprising the réle of the
neutral (though strongly polar!) solvent particles in
a phenomenological dielectric constant &.

For plasma, where cluster expansions are still to
some extent feasible, Abe? was able to obtain a
second approximation f—f"’~x¢&log(x¢), indicat-
ing a more complicated singularity at infinite
dilution.
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Now, according to a hint from Lars Onsager
(guest lectures in Oslo, 1968): U*® should be an
entire function of e ! Whatever the reasoning
behind this remark may be — it is honored in the
first approximation of Debye and Hiickel (U® ~ ¢?),
not, however; by the second approximation of Abe.
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APPENDIX
(1) The proposition:

E°= %jﬁ 2dV — self energies

Proof:

(4 >
Ee —
e m *n
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1., = [r*drdQXr)
where
R=r,—r1,
O=/(r-r1,T—T,)
0= ,(r,R)

Choosing polar axis along R:

R
dQ =sinfdfd ¢, sin® = l——— sin 0

— rl
one sees that
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ged.
(2) The proposition (9):

TV3 = const. (S¢- ).
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whence the conclusion follows.
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